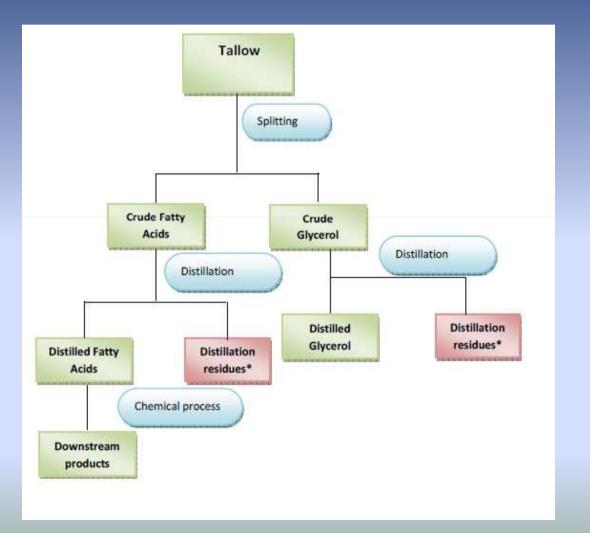
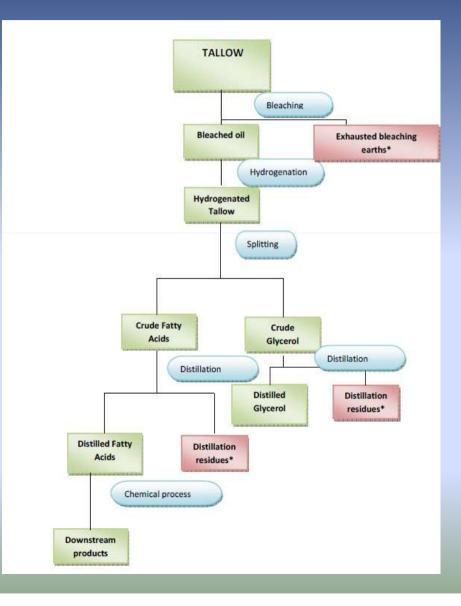


TRADITIONAL USES OF OILS AND FATS IN OLEOCHEMISTRY AND FUTURE PERSPECTIVES ARISING FROM THE BIO BASED ECONOMY IMPLEMENTATION

> Turin, the 24th of May 2013 Susanna Larocca, SO.G.I.S SpA



FATS IN OLEOCHEMISTRY


- Tallow, fats: Key raw materials for oleochemistry in the EU.
- Thanks to these raw materials, the EU oleochemical producers were able to survive to the strong competitiveness by the Far East producers, benefiting by a large availability of Palm Oil at low price, besides low costs for manpower and less restrictive laws

- Core base Oleochemical processes:
- Two main routes:
 - Splitting to obtain Fatty Acids and Glycerol, followed by distillation, to obtain distilled Fatty Acids and distilled Glycerol. Possible hydrogenation of Fatty Acids, to obtain saturated Fatty Acids
 - Hydrogenation, to obtain hydrogenated Tallow, followed by splitting and distillation, to obtain distilled saturated Fatty Acids and distilled Glycerol (typical Italian process)

- Main derivatives:
- Fatty Alcohols: obtained from hydrogenation of Fatty Acids or Fatty Acids Methyl Esters
- Oleic Acid: obtained via a physical separation of unsatured Fatty Acids
- Dicarboxylic Acids: obtained from ozonolysis or oxydation of unsaturated Fatty Acids
- Fatty Esters: Obtained via Esterification reaction of Fatty Acids + Fatty Alcohols or Alcohols from petrochemical sources

- Salts of Fatty Acids: obtained by the reaction of Fatty Acids with a Metal Oxide/Metal Hydroxide/Metal Halide
- Fatty Amides: obtained by an amidation reaction of Fatty Acids with an Amine
- Dimer Acids: obtained via reaction of unsaturated Fatty Acids with a catalyst
- Iso Fatty Acids: obtained as by product from a reaction of Fatty Acids with a catalyst
- Transesterification of Fats with Glycerol, to obtain mono and diglycerides

- Esterification reaction of Glycerol with a Carboxylic Acid, to obtain Glycerol esters
- Hydrogenolysis of Glycerol to obtain Propylene Glycol
- Enzymatic process to obtain Methanol from Glycerol
- Process to obtain Epichlorohydrin from Glycerol

OG

- Many other possible reactions
- Application fields:
 - Detergents
 - Plastic materials
 - Cosmetics
 - Pharmaceuticals
 - Animal Feeding
 - Lubricants
 - Metal working
 - Paint and varnishes
 - Rubber
 - Textiles
 - Others

50.615

- Oleochemicals in detergents:
- 50 % surfactants currently based on oils and fats
- Commission Decision 2003/31/EC, Commission Decision 2005/342/EC and Commission Decision 2005/344/EC and their following updates, Commission Decision 889/2008/EC, Commission Decision 2011/263/EC, Commission Decision 2011/382/EC and Commission Decision 2011/383/EC introduce the ecological criteria for the award of the Community eco-label to certain products. The level of surfactant based on oils and fats is expected to increase.

50.615

- Oleochemicals in Animal Feeding:
- Regulation 68/2013/EC:
 - 13.6.2 Fatty Acids esterified with Glycerol
 - 13.6.3 Mono di and triglycerides of Fatty Acids
 - 13.6.4 Salts of Fatty Acids
 - 13.6.6 Crude Fatty Acids from Splitting
 - 13.6.7 Pure distilled Fatty Acids from Splitting
 - 13.8.1 Glycerine, crude
 - 13.8.2 Glycerine

- Main Oleochemical additives in Food: Council Directive 95/02/EC:
 - E 422 Glycerin: humectant, sweetener
 - E 470 Magnesium Stearate: emulsifier, stabiliser
 - E 470a Sodium, Potassium and Calcium salts of Fatty Acids: emulsifier, stabiliser, anti-caking agent
 - E 470b Magnesium salts of Fatty Acids: emulsifier, stabiliser, anti-caking agent
 - E 471 Mono- and Diglycerides of Fatty Acids Glyceryl Monostearate, Glyceryl distearate: emulsifier
 - E 473 Sucrose esters of Fatty Acids: emulsifier
 - E 474 Sucroglycerides: emulsifier
 - E 475 Polyglycerol Esters of Fatty Acids: emulsifier

- Oleochemicals for pharmaceutical applications: a huge number. Listed in:
 - Ph Eur, 7° ed 2011
- Oleochemicals for Cosmetics: a huge number. Listed in Commission Decision 2006/257/EC

- Oleochemicals for plastics intended to come into contact with food: a huge number. Listed in:
 - Commission Regulation 10/2011/EC on plastic materials and articles intended to come into contact with food

OILS & FATS AREVERY VERSATILE AND SUSTAINABLE SOURCE OF HYDROCARBONS, ABLE TO SUBSTITUTE MINERAL OIL AS RAW MATERIAL FOR THE PRODUCTION OF A HUGE NUMBER OF CHEMICAL SUBSTANCES

OILS & FATS IN BIOFUELS INDUSTRY

- Biofuels, Oils & fats derivatives:
 - Traditional Biodiesel, obtained from transesterification with Methanol/Ethanol
 - Biodiesel from Hydrocraking (essentially, Neste Process)
- Oils & Fats are available in limited quantities: strong competition between use in food, oleochemistry and biofuels

RECENT MODIFICATION IN ABPR

- Regulation 294/2013/EC
 - Article 1, (1) (j): Oleochemical products become end poits. Use of Category I Tallow in oleochemical products becomes allowed
 - Annex, (2), (b), (iii): Cat I Glycerol, provided that it is coming from Tallow processed with <u>Method I, at</u> <u>Annex IV, Chapter III, A. of Regulation 142/2011/EC,</u> is allowed for:
 - Technical purposes
 - Biogas; the digestion residues may be applied to land within the national territory of the producing Member State, <u>subject to the decision of the competent authority</u>
 - Denitrification in waste water treatment plants

RECENT MODIFICATIONS IN ABPR

- □ Annex, (2), (b), (iv): Cat 3 Glycerol can be used:
 - For technical purposes
 - For biogas, in which case the digestion residues may be applied to land
 - For animal feeding, but not in case it is derived from UCO

50.615

ABPR + ANIMAL FEEDING REGULATION

Consequences:

- Import of Tallow from USA and Canada allowed <u>provided</u> <u>that tallow is processed according to Processing Method I at</u> <u>Annex IV, Chapter III, A. of Regulation 142/2011/EC.</u>
- According to Art 29 1. (c) of Regulation 1069/2009, need for procedures based on HACCP in place in all Companies working more than one category of Tallow, Renderers, Oleochemical and Biodiesel Companies
- For those Companies selling in the animal feeding field, HACCP + general compliance to Regulation 183/2005/EC (in particular: Notification to the Competent Authorities + Approval + Registration)

DIRECTIVE 28/2009/EC (RED)

- COM (2012) 595, revising Directive 28/2009/EC (RED)
- Annex IX, Part B: Cat I and II tallow in double Counting
- Currently under discussion. Still to be understood if multiple counting will survive.
 Possibility of a fixed quota for certain raw materials.
- At the end of the revision process: common list of incentivized raw materials all over the EU

THE BIOBASED ECONOMY

- COM (2011) 112 "A Roadmap for moving to a competitive low Carbon Economy in 2050"
 - Reduction in GHG in the EU:
 - ^o 40 % lower than 1990 levels in 2030
 - ^o 60 % lower than 1990 levels in 2040
 - 80 % lower than 1990 levels in 2050

THE BIOBASED ECONOMY

- COM (2012) 60 "Innovating for Sustainable Growth: a Bioeconomy for Europe"
 - Bioeconomy becomes part of two "flagship initiatives": "Innovation", in "Smart growth" area, and "Resource efficient Europe", in "Sustainable growth" area.
 - It is founded on the seventh framework program for Research and Technological Development (FP7) and on the EU Framework Programme FOR Research and Innovation (Horizon 2020)

THE BIOBASED ECONOMY

Challenges for the EU:

- Ensuring Food Security
- Managing natural resources sustainably
- Reducing dependence on non-renewable resources
- Mitigating and adapting to climate change
- Creating jobs and maintaining European competitiveness
 - ("It is estimated that direct research funding associated to the Bioeconomy Strategy under Horizon 2020 could generate about 130.000 jobs and 45 billions € in value added in bioeconomy sectors by 2025")

GROWTH EXPECTATIONS IN BIO BASED ECONOMY (CHEMICALS)

Item	Consumption (EU)	2020 estimated consumption	Source
Bio based plastics	210.000 t (2008/2009)	4.050.000 t	EU Bioplastics, Roquette Frères S.A.
Biodegradable bio based Polymers	35.000 t (2010)	333.000 t	BASF SE
Bio lubricants	137.000 t (2008)	420.000 t	Fuchs Petrolub AG
Bio - composites	315.000 t (2010)	830.000 t	The EU Hemp Association
Platform and Fine Chemicals	1.110.000 t	1.340.000 t	Roquette Frères S.A.

The biobased economy

- Besides vegetable oils, Tallow/Fats have to be acknowledged as key raw materials for the biobased economy, in order to secure competitiveness of the EU oleochemical industry
- Building blocks from fats/oils are the most well known raw materials in this field
- In particular, Glycerol is a key raw material for C₃ chemistry
- Hierarchy of use/cascade use need to be promoted, in order to reach the maximum added value in the value chain