

INANOIL Analyzers

Automated characterization of olive oils

Congresso SISSG 2022 "OLI E GRASSI ALIMENTARI: INNOVAZIONE E SOSTENIBILITA' NELLA PRODUZIONE E NEL CONTROLLO"

Andrea Carretta

Senior Application Specialist Food and Environmental June, 17th 2022 - Perugia

INANOIL Analyzers

COMMISSION REGULATION (EEC) No 2568/91

of 11 July 1991

on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis

(OJ L 248, 5.9.1991, p. 1)

Analizzatori INANOIL

SOLUTION 1:

Alkyl-esters and Waxes

SOLUTION 2:

Sterols and Alcohols

SOLUTION 3:

Stigmastadienes

Further automations

MOSH/MOAH (DIN EN 16995:2017-08)

Including on-line Aloxidation and Epoxidation

2/3 MCPD e GEs

AOCS Cd 29a/b/c-13

Reference Regulation

COMMISSION REGULATION (EEC) No 2568/91

of 11 July 1991

on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis

(OJ L 248, 5.9.1991, p. 1)

Change of perspective

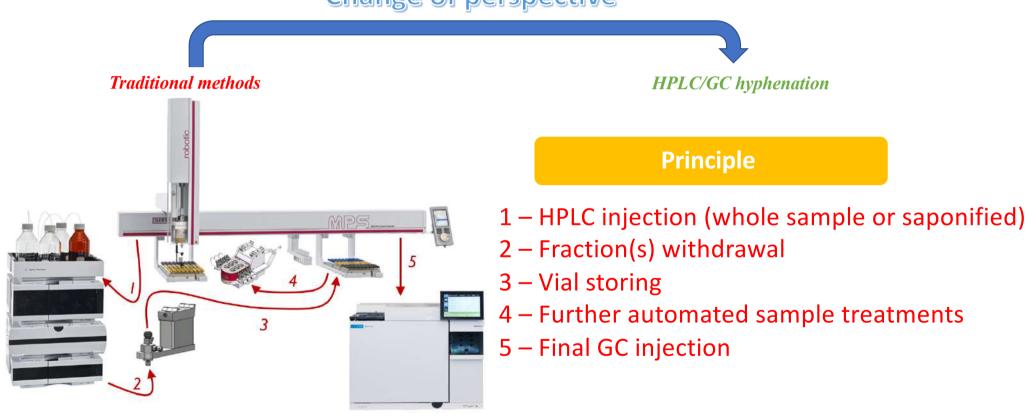
Automated sample-prep and analysis via HPLC/GC

- Large amount of solvents
 Need of skilled lab technicians for several hours
 Use of large quantities of consumables and glassware
 Laborious sample preparation
 Drastic reduction in volume of solvents to be used
 The need to dedicate operators limited to a few minutes
 Almost no use of consumables and glassware
 Sample preparation substantially limited to an initial dilution
- Predisposition to random errors
 Elimination of random errors

Traditional and INANOIL workflow comparison – Alkylesters, Waxes, Stigmastadienes

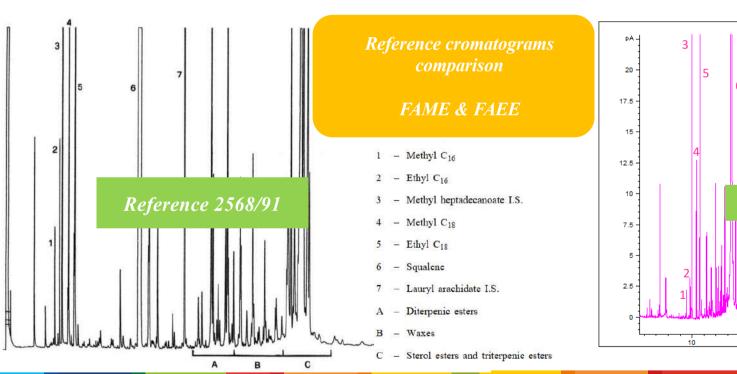
Saponification

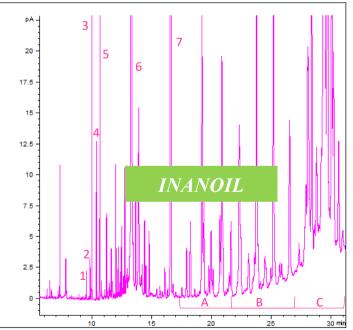
Traditional and INANOIL workflow comparison – Sterols, Alcohols



INANOIL automated platforms

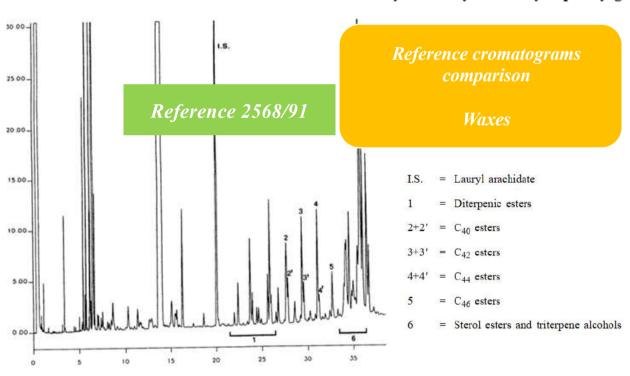
Change of perspective

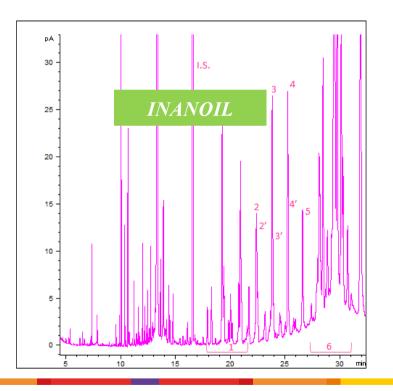



Optimisation results – Alkylesters and Waxes

ANNEX XX

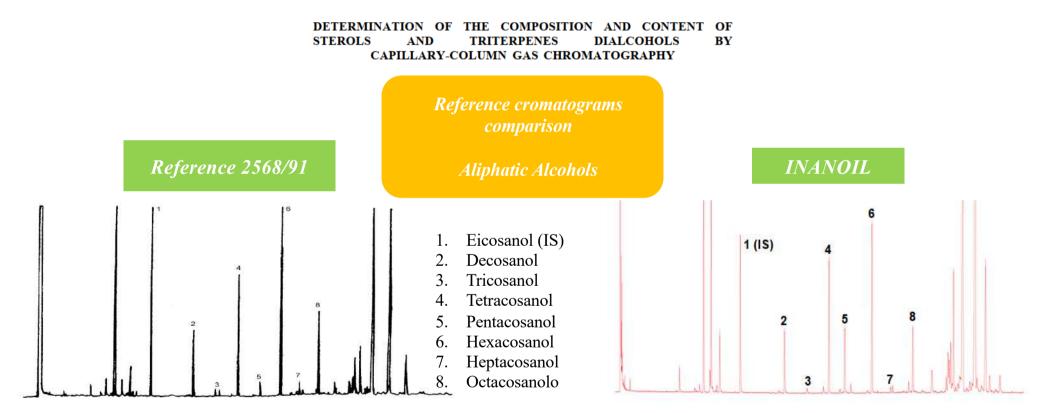
Method for the determination of the content of waxes, fatty acid methyl esters and fatty acid ethyl esters by capillary gas chromatography



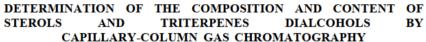

Optimisation results – Alkylesters and Waxes

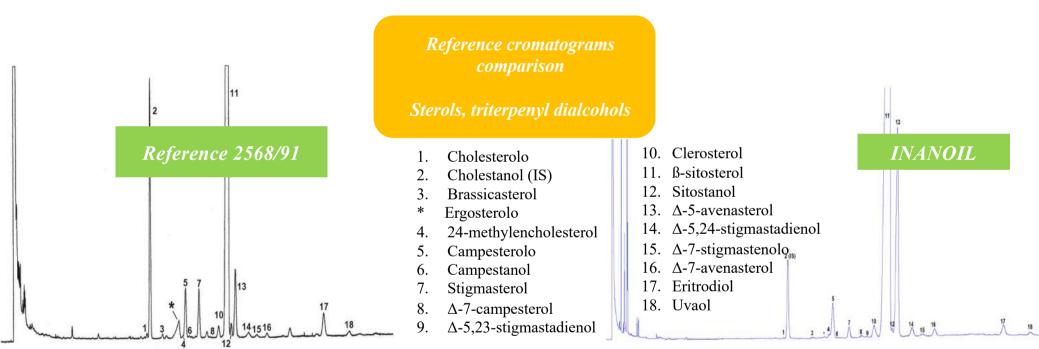
ANNEX XX

Method for the determination of the content of waxes, fatty acid methyl esters and fatty acid ethyl esters by capillary gas chromatography



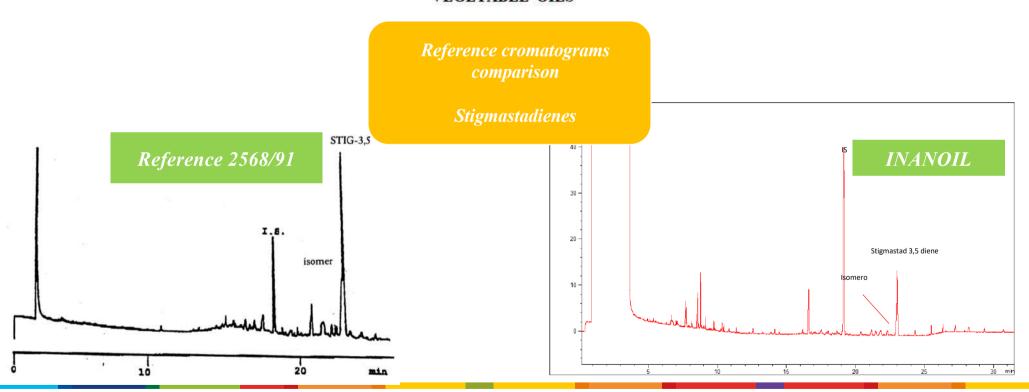
Optimisation results – Sterols and alcohols


ANNEX V



Optimisation results – Sterols and alcohols

ANNEX V



Optimisation results – Stigmastadienes

ANNEX XVII

METHOD FOR THE DETERMINATION OF STIGMASTADIENES IN VEGETABLE OILS

Validation Results

Reference Sample: Ring Test «RT62» (Camera di commercio di ROMA) Blend od virgin and refined olive oil

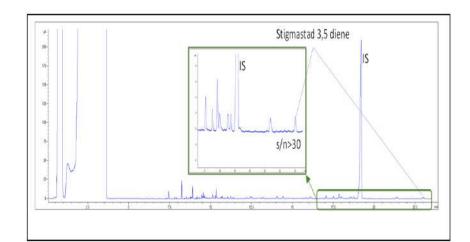
Validation approach:

- Batches of 10 replicates Complete automation
- Evaluation of Average, CV_r%, BIAS%

Validation results – Alkylesters and Waxes

Accuracy and Precision

#	mg/kg (sommatoria)			
1	225.8	media	dev. St	
2	216.9	220.5	5.1	
3	215.2	Valore di r	riferimento	
4	215.5	(RT62) Cere = 221.		
5	227.3		CV,%	
6	215.1	bias% 0.25%	2.32%	
7	224.2]		
8	224.7			
9	215.8			
10	224.0	1		


#	mg/kg FAEE (sommatoria)		
1	36.6	media	dev. St.
2	35.6	35.4	0.53
3	36.0	Valore di r	iferimento
4	35.5		62) = 36.2
5	35.0		
6	35.2	bias% 2.18%	CV,%
7	35.0	100000	13
8	35.0		
9	35.2		
10	35.0		

Validation results – Stigmastadienes

Validazione Stigma RT62

	_		
#	mg/kg		
1	3.68	media	dey. St.
2	3.78	3.70	0.04
3	3.82	Valore di r	•
4	3.78	(RT Stigma	•
5	3.77		I
6	3.81	bias.% 1.66%	ር.ሂ <u>.</u> % 1.16%
7	3.78		
8	3.75		
9	3.78		
10	3.70		

Validation results – Sterols and alcohols

Accuracy and Precision

Validazione Alcoli Alifatici

#	mg/kg (sommatoria)
1	258.5
2	265.5
3	267.0
4	263.2
5	262.4
6	259.0
7	261.9
8	256.1
9	269.3
10	262.0

media 262.5	dev. St. 4.0
Valore di ri (RT Alcoli =	(Sc) (C) #51
bias% 1.46%	CV _r %

Validazione Steroli e Dialcoli Triterpenici

#	mg/kg steroli totali
Į.	1464
2	1383
3	1419
4	1398
5	1408
6	1428
7	1409
8	1439
9	1453
10	1420

media 1422	dev. St. 25
/alore di r	iferimento
(RT	62)
Steroli :	= 1447
Steroli : bias%	= 1447 CV,%

Validation results – Sterols and alcohols

Accuracy and Precision

#	Colesterolo	Brassicasterolo	Campesterolo	Stigmasterolo	Δ-7- stigmastenolo	Eritrodiolo Uvaol	B-sitosterolo (totale)
- 1	0.125	0.047	4.22	1.69	0.610	5.76	92.7
2	0.139	0.045	4.21	1.76	0.537	5.40	92.7
3	0.125	0.047	4.18	1.76	0.596	5.75	92.7
4	0.138	0.044	4.15	1.77	0,566	5.42	92.8
5	0.139	0.045	4.14	1.75	0.570	5.44	92.7
6	0.128	0.056	4.20	1.75	0.585	5.86	92.7
7	0.121	0.053	4.17	1.76	0.579	5,52	92.7
8	0.131	0.057	4.24	1.86	0.553	5.96	92.6
9	0.118	0.044	3.91	1.76	0.597	5.42	93.0
10	0.125	0.047	4.20	1.71	0,573	5.75	92.7
RT62	0.136	0.045	3.95	1.81	0.552	5.368	92.5
Avg	0.129	0.048	4.16	1.76	0.577	5.628	92.7
CVr%	5.98%	10.27%	2.25%	2.47%	3.76%	3.72%	0.11%
BIAS%	5.10%	7.67%	5.31%	3.02%	4.45%	4.83%	0.28%

<u>INANOIL impruvements – Materials/additional devices</u>

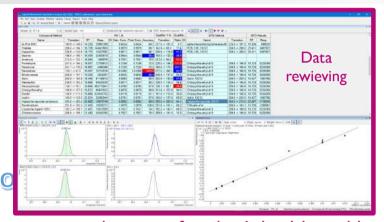
	Alkylesters and Waxes	Stigmastadienes	Sterols and Alcohols				
Materials							
Generic lab glassware	NOT Needed	NOT Needed	NOT Needed				
Flasks	NOT Needed	NOT Needed	NOT Needed				
LC glass columns	NOT Needed	NOT Needed	NOT Needed				
Test tubes	NOT Needed	NOT Needed	NOT Needed				
Separating funnels	NOT Needed	NOT Needed	NOT Needed				
TLC sheets			NOT Needed				
TLC chambers			NOT Needed				
UV Lamp			NOT Needed				
Desiccator			NOT Needed				
	Additional devices						
Rotavapor (or equivalent)	NOT Needed	NOT Needed	NOT Needed				
Nitrogen blowing device	NOT Needed	NOT Needed	NOT Needed				
Muffle	NOT Needed	NOT Needed	NOT Needed				

INANOIL impruvements — Chemicals

		Alkylesters and Waxes		Stigmastadienes		Sterols and Alcohols	
	Chemicals (estimated average amounts for a 10 sample batch)						
Chemical	EU N	Method → INANOIL	% Saving - amount saved	EU Method → INANOIL	% Saving - amount saved	EU Method → INANOIL	% Saving - amount saved
Activate silica	150	0 g → not needed	100% - 150 g	150 g → not needed	100% - 150 g	-	-
Organic solvents	30	000 ml → 250 ml	92% - 2750 ml	3500 ml → 200 ml	95% - 3200 ml	3000 ml → 200 ml	93% - 2800 ml
Hydro(alcoholic) reagents for saponification		-	-	4000 ml → not needed	100% - 4000 ml	same as EU Method (so far)	-

<u>INANOIL impruvements – Lab technician commitment</u>

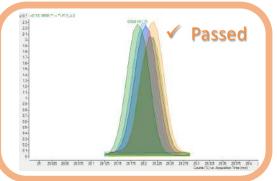
	Alkylesters	and Waxes	Stigmast	adienes	Sterols and Alcohols		
	Operator working time (estimated average for a 10 sample batch) - hours						
	EU Method → INANOIL	% Saving - amount saved	EU Method → INANOIL	% Saving - amount saved	EU Method → INANOIL	% Saving - amount saved	
Overall (including GC analysis)	12 → 8	33% - 4	15→ 9.5	36% - 5.5	10 → 4	60% - 6	
Sample prep only	4 → 0.5	87% - 3.5	10 → 0.5	95% - 9.5	7 → 0.5	92% - 6.5	



INANOIL impruvements – Final Remarks

Aimed to....

- > Drastically reduce the consumption of solvents
- Limit the intervention of expert operators to a few minutes, reducing the entire sample-prep to the simple dilution of the initial sample (eventually saponified)
- ➤ Eliminate the use of glassware and consumables
- ➤ Effectively cancel the incidence of random errors



LESS solvent exposure

... take care of analyst's health, and let him to exploit his skills «away from the hood»

Totally automated sample-prep and analysis

Analizzatori INANOIL

PARTE 1:

Me, 'til /ceri e Cere

PARTE 2:

Ster A /ii

PARTE 3:

Stigmastadieni

7 luglio

Aknowledgments

Centro Analisi Biochimiche sas

srainstruments.com

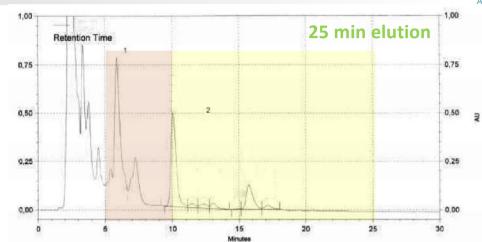
Piattaforma INANOIL per la determinazione di Steroli e Alcoli

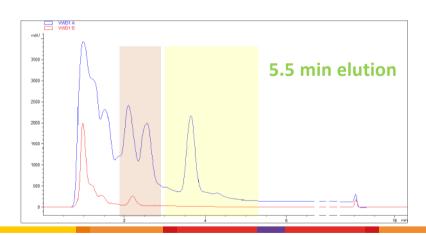
PARTE 2

SEPARAZIONE DELLE FRAZIONI DEI COMPOSTI ALCOLICI

OGGETTO

L'insaponificabile preparato come descritto nella parte 1 è frazionato nei diversi composti alcolici, alcoli alifatici, steroli e dialcoli triterpenici (eritrodiolo e uvaolo).

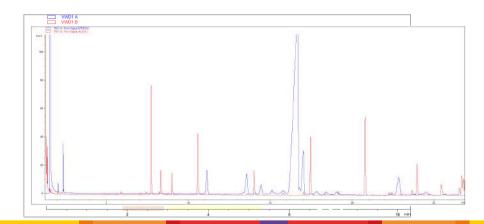

2. PRINCIPIO


L'insaponificabile può essere frazionato per mezzo della cromatografia basica su strato sottile (metodo di riferimento), rivelato per poi raschiare ed estrarre le corrispondenti bande. Come metodo alternativo, la separazione può essere realizzata mediante HPLC con colonna di gel di silice e rivelatore UV raccogliendo le diverse frazioni. Gli alcoli alifatici e triterpenici nonché gli steroli e i dialcoli triterpenici sono isolati insieme.

ALCOHOLIC FRACTION

STEROLIC FRACTION

Piattaforma INANOIL per la determinazione di Steroli e Alcoli



ALCOHOLIC FRACTION

STEROLIC FRACTION

ALCOHOLIC FRACTION

STEROLIC FRACTION

