Società Italiana per lo Studio delle Sostanze Grasse

SISSG Congress

Edible oils and fats : Innovation and Sustainability in Production and Control

Perugia (I), June 15-17, 2022

Società Italiana per lo Studio delle Sostanze Grasse

The modern Oil Mill: extraction Efficiency, olive oil Quality, Diversification and Sustainability

L. Di Giovacchino – Ex Researcher of CRA-ISE – Pescara (Italy)

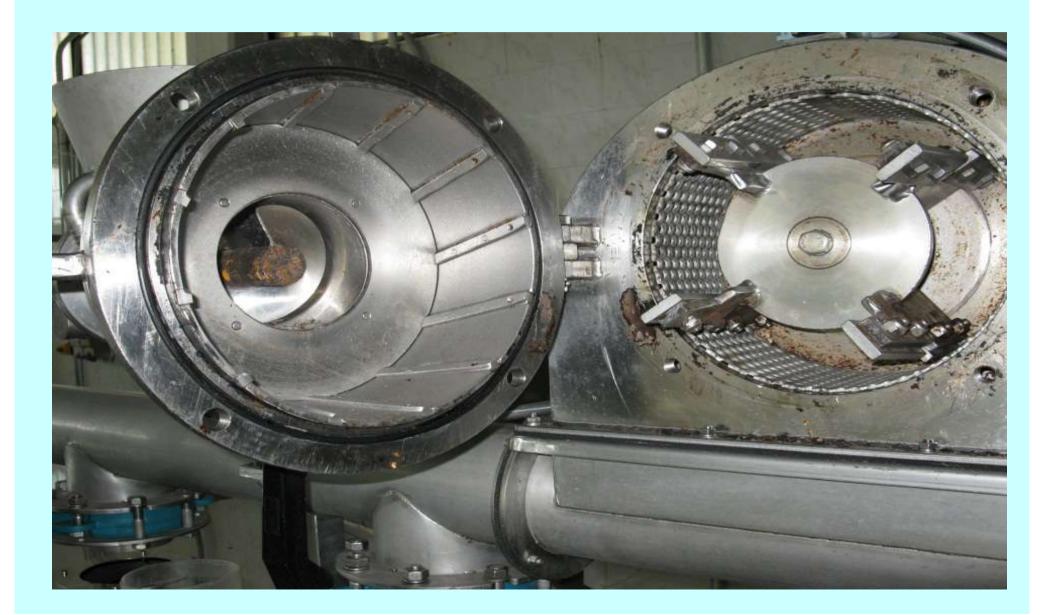
During the last 20 years, important transformations took place within the Italian sector of oil mill, and in particular:

- the number of **oil mills** diminished;

- most of oil mills are equipped with the **Centrifugation** system, at three or two phases;

- the activity of the **industrial sector of pomace oil** diminished, due, in particular, to the reduction of pomace oil consumption;

- that, forced some oil mills, having medium-large capacity, to change the **olive processing diagram** with the end to recover part of oil and stone fragments contained in the olive pomace.

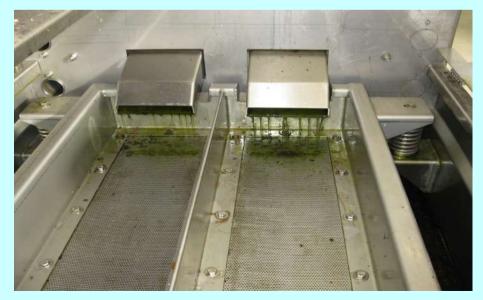

To day, most of medium-high size oil mills carry out the following operations:

- DOUBLE EXTRACTION of VIRGIN OLIVE OIL from OLIVE PASTE
- **RECOVERY** of **STONE FRAGMENTS**

- UTILIZATION of OIL MILL BY-PRODUCTS

The preparation of **OLIVE PASTE** is carried out by :

the METALLIC CRUSHER at fixed HAMMERS


Olive paste **malaxation** is carried out by the large **mixers** in series and placed in vertical

Centrifugal decanter at 2-phases

Practical test of

DOUBLE EXTRACTION of VIRGIN OLIVE OIL from OLIVE PASTE

Results obtained in the double extraction of oil from olive paste (cv. **Coratina**) by centrifugal decanter at **three** phases in industrial oil mill of Puglia region. (Oil 2nd Extr.: Eritrodiol + Uvaol = 4.7%)

(Source: L. Di Giovacchino et al., *RISG*, 68, 519-527, 1991)

		YIEI	LD %	OLIVE	POMACE	Oil M Wastew		011
H ₂ O %	OIL %	1 st Extrac.	2 nd Extrac.	H ₂ O %	OIL %	Dry Matt. %	OIL g/L	Oil lost *
45.2	23.2	85.3	2.2	47.6	2.29	9.6	12.2	2.62

* Value calculated and expressed as kg/100 kg olives

Results obtained in the double extraction of oil from olive paste (cv. **Coratina**) by centrifugal decanter at **two** phases in industrial oil mill of Puglia region.

(Oil 2nd Extr.: Eritrodiol + Uvaol = 9.8%)

(Source: L. Di Giovacchino et al., *RISG*, 79, 351-355, 2002)

		TILL	D %	Olive Pomace	T ⁻ EXU.	Olive Pomace	Z EXU.	Oil lost *
H ₂ O %	OIL %	1 st Extr.	2 nd Extr.	H ₂ O %	OIL %	H ₂ O %	OIL%	
48.4	23.5	84.5	2.6	62.8	4.00	68.7	2.8	2.50

* Value calculated and expressed as kg/100 kg olives

Results obtained in the double extraction of oil from olive paste (cv. **Coratina**) by the centrifugal decanter at **two** (first extraction) and **three** phases (second extraction) in an industrial oil mill of Puglia region.

(Oil 2nd Extr.: Eritrodiol + Uvaol = 8.5%)

(Source: L. Di Giovacchino et al., *E.J.L.S.T*, 119, 1600161, 2017)

ПО	ОП	YIEI	∠ D %₀	OLIVE POMACE		Oil M Wastew		01	D
H ₂ O %	OIL %	1 st Extrac.	2 nd Extrac.	H ₂ O %	OIL %	Dry Matt. %	OIL g/L	Oil lost *	Recoverd Stone *
50.5	21.2	85.6	1.4	59.5	3.00	10.4	18.5	2.40	12.6

* Value calculated and exprtessed as kg/100 kg olives

Oil yield and oil lost (in the by-products) in olive processing by the double centrifugation

100 kg olives = 21.2 kg of oil

Extracted Oil kg 18.4 (18.1 + 0.3)

Oil in the Pomace kg 1.3

Oil in OMW kg 1.1

Oil in the Sludges kg 0.3

Average recovered income (oil and other by-products) for oil mill having a practical loading capacity of 100 t olives/day and equipped with decanters at 2 and 3-phases and a stoner machine.

RECOVERY of by-PRODUCTS	Average amount/day	Value (rough) (Euro/day)
Oil of 2nd Extraction (kg) (3-4 kg/t olives)	300	900
Olive stone fragments (t) (100-120 kg/t olives)	12	1800
Olive pomace (from 3-phases decanter) (t) (450 kg/t olives)	45	675
Olive Mill Wastewater (m ³) (0.45 m ³ /t olives)	50	175

Price: oil 3 Euro/kg; Stones: 150 Euro/t; Wet pomace: 15 Euro/t; OMW: 3.5 Euro/m³

RECOVERY of

STONE FRAGMENTS

The biggest Italian oil mill located in Puglia region (year 2014). It is equipped with 16 centrifugal decanter (at 2 and 3-phases) having, each one, a theoretical loading capacity of 15 t / h of olive paste.

The stone fragments are recovered by a stoner machine and represent an important income of oil mill

The biggest Spanish oil mill located in Andalusia region (year 2017). It is equipped with 14 centrifugal decanter (at 2 phases) having, each one, a theoretical loading capacity of 15 t / h of olive paste.

Other large oil mill where the stone fragments are recovered from olive pomace

Spanish oil mill

The LIGNIN is a complex organic polymer constituted by phenolic compounds. The polymeric structure is threedimensional (3-D) and formed by phenylpropane units. In particular, the polymeric units are constituted by 3 different monomers:

1) alcohol *p*-coumaric; (alcohol-4-hydroxycinnamic)

2) alcohol coniferilic (alcohol 4-hydroxy-3-methoxycinnamic);

3) alcohol synaptic (alcohol 4-hydroxy-3,5-dimethoxycinnamic).

Average results of some characteristics of stone fragments separated from olive pomace obtained in olive processing by decanter at 3 and 2 phases

(Source: M.G. Di Serio et al., *RISG*, 88, 111-117, 2011)

	Characteristics of stone fragments							
Olive pomace								
(obtained from)	Moisture %	Oil %	Ash %	Calorific power (Kcal/kg)				
Decanter at 3 phases	19.5	0.49	0.32	4134				
Decanter at 2 phases	20.8	0.27	0.39	4100				

Composition (% on dry matter) of olive stone fragments obtained after separation from olive paste by a partial de-stoner machine.

(Source: A. Leone et al., *Biomass and Bioenergy*, 81, 108-116, 2015)

Parameter	Value	Parameter	Value
Moisture	22.0 %	Carbon	49.6 %
Oil	0.44 %	Hydrogen	7.05 %
Ash	0.21 %	Oxygen	43.1 %
High Calorific value	20.0 MJ/kg	Nitrogen	0.044 %
Low Calorific value	18.1 MJ/kg	Sulphur	0.023 %

If isn't possible to sell **OLIVE POMACE** to the industry of pomace oil, it is

RATIONAL and **ADVANTAGEOUS**

to USE it by

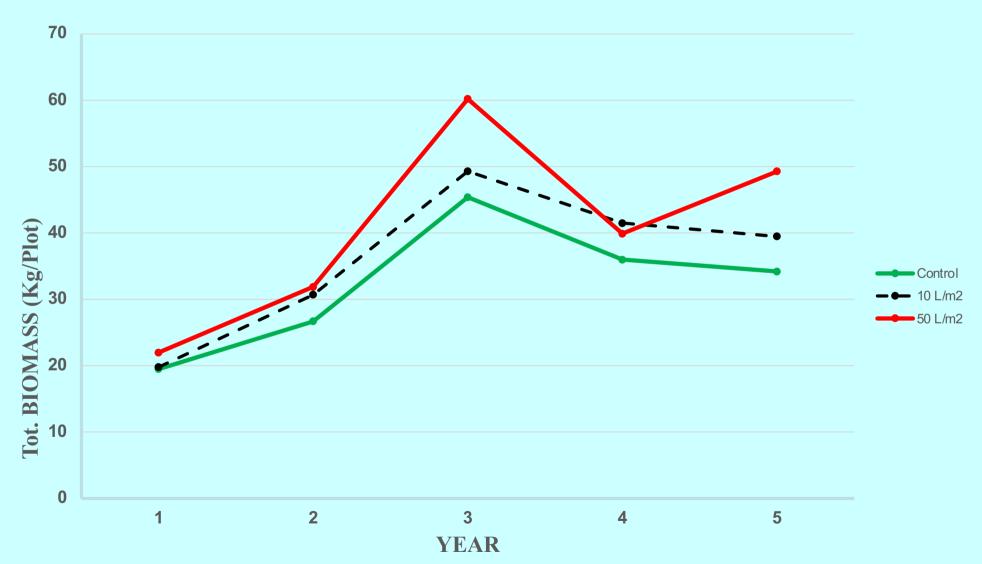
the controlled spreading on cultivated soil

Results obtained in olive trees cultivation (cv. Leccino) on soil treated, for 4 consecutive years, with 50 t/ha of fresh olive pomace from a 3-phases decanter.

(Source: Nasini et al., *Agriculture, Ecosystem and Environment*, 164, 292-297, 2013)

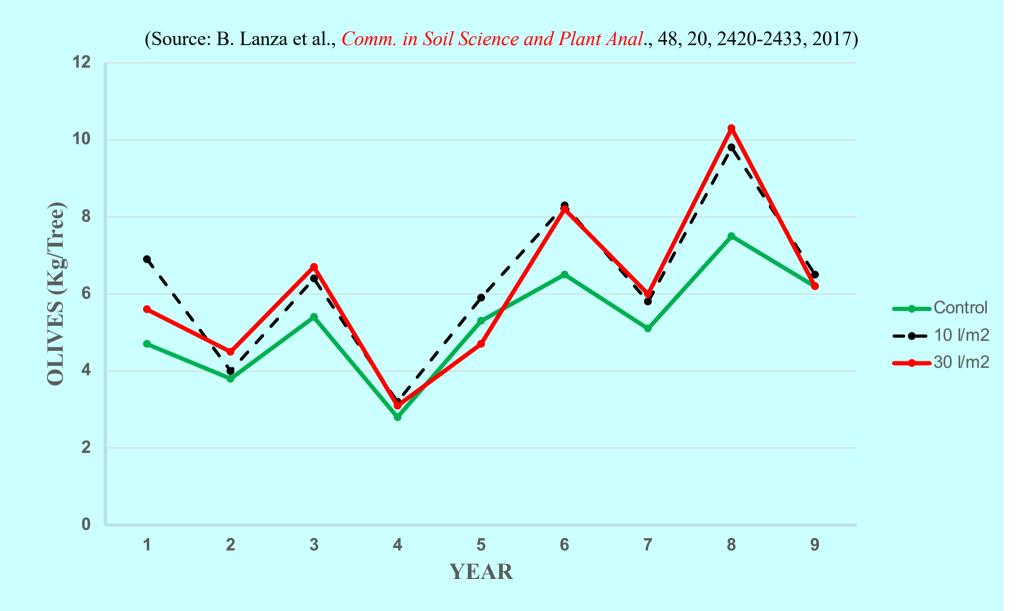
Demonsterne	1 st Year		2 nd Year		3 rd Year		4 th Year	
Parameters	Control	50 t/ha	Control	50 t/ha	Control	50 t/ha	Control	50 t/ha
Olive production (kg olives/tree)	5.8	7.2	8.0	10.0	11.8	16.0	17.8	22.0
Productive efficiency (kg olives/m ³ foliage)	0.50	0.60	0.65	0.90	0.82	0.95	1.25	2.35

RATIONAL UTILIZATION


of

OIL MILL WASTEWATER

Amount (kg/ha) of organic and mineral matter supplied to the soil by spreading the maximum volume of OMW permitted from the Italian law 574/1996.


	Oil Mill Wastewater (OMW) obtained by				
Fertilizer elements	Pressing system	3-phases Centrifugation system			
	50 m ³ /ha	80 m ³ /ha			
Dry organic matter (kg)	4000 – 7000	3000 - 6000			
Nitrogen (kg, as element)	30 – 50	25 - 50			
Phosphorus (kg, as element)	15 - 30	15 – 30			
Potassium (kg, as element)	100 - 200	80 - 160			

Results obtained in the maize cultivation (5 consecutive years) on soil treated with oil mill wastewater (OMW).

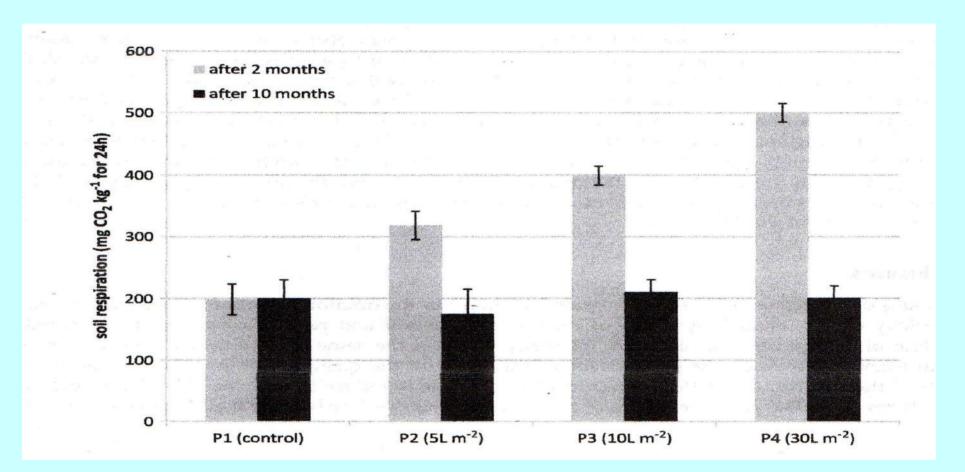
(Source: L. Di Giovacchino et al., Agric. Mediterranea, 131, 33-41, 2001)

Quantitative results obtained (kg olives/tree) in olive tree cultivation (9 consecutive years) on olive orchard treated with different amount of oil mill wastewater (OMW)

Supply of organic dry matter and fertilizer elements to soil cultivated with **olive** trees and treated with different amount of **OMW**

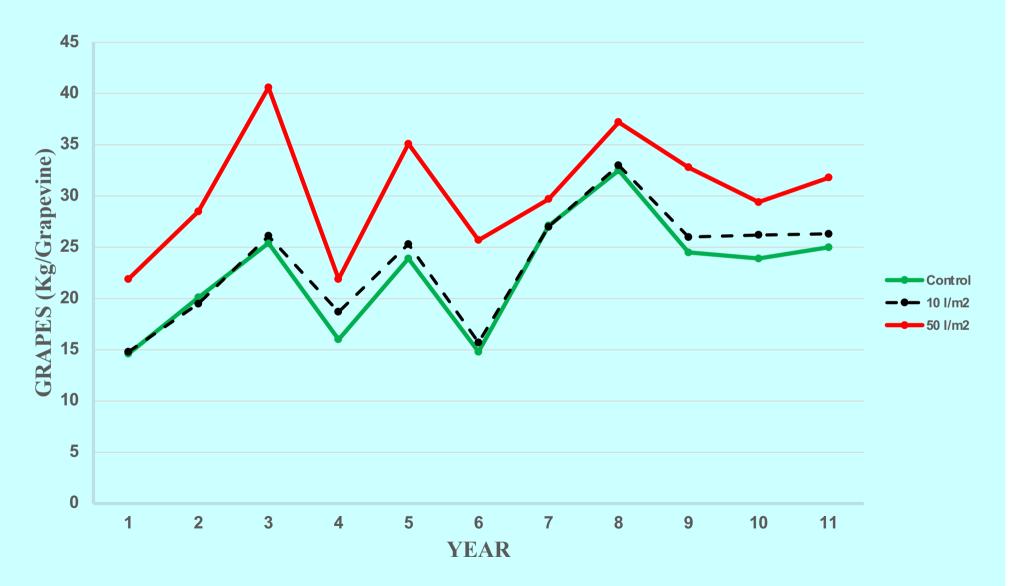
(Source: B. Lanza et al., *Comm. in Soil Science and Plant Anal.*, 48, 20, 2420-2433, 2017)

		Oil Mill Wastewater spread on soil			
Fertilizer Elements	Control	10 L/m ² (100 m ³ /ha)	30 L/m ² (300 m ³ /ha)		
Organic dry matter (kg/ha)		5920	17760		
Nitrogen (kg/ha)	46 + 25	23 + 12 + 50	150		
Phosphorous (kg/ha)	50	25 + 15	45		
Potassium (kg/ha)	100	50 + 160	480		


Chemical and micro-biological characteristics of soil cultivated with **olive** trees and treated for **9** consecutive years with **OMW** from 3-phases decanter

Determinations		Oil Mill Wastewater (OMW) spread			
	Control	5 L / m ²	$10 L / m^2 *$	30 L/m ² **	
Chemical characteristics					
рН	7.7	7.8	7.7	7.8	
Organic matter (g/100 g)	1.77	1.88	2.11	2.18	
Total nitrogen (g/100 g)	0.11	0.12	0.12	0.13	
Reducing substances (mg/100 g)	0.12	0.25	0.30	0.42	
Micro-biological characteristics					
Total microflora (CFU/g)	3.0 x 10 ⁸	4.5 x 10 ⁹	5.4 x 10 ⁹	5.9 x 10 ⁹	
Yeast (CFU/g)	5.0 x 10 ⁵	1.7 x 10 ⁷	2.0 x 10 ⁷	2.7 x 10 ⁷	

(Source: B. Lanza et al., *Soil Sc. and Plant Anal.*, 48, 20, 2420-2433, 2017)


Respiratory activity of soil cultivated with **olive** trees, two and ten months after the spreading of different amount of **OMW**.

(Source: B. Lanza et al., *Soil Sc. and Plant Anal.*, 48, 20, 2420-2433, 2017)

Results obtained in the **grapevine** cultivation (11 consecutive years) on soil treated with oil mill wastewater (OMW)

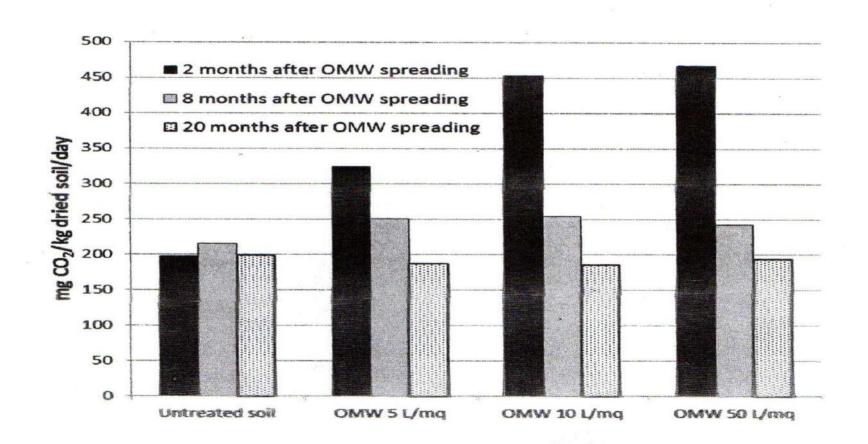
(Source: B. Lanza et al., *Water Air Soil Pollut.*, 231, 86, 2020)

Supply of organic dry matter and fertilizer elements to soil cultivated with grapevine and treated with different amount of OMW

(Source: B. Lanza et al., *Water Air Soil Pollut.*, 231:86, 2020)

Fertilizer Elements	Control	Oil Mill Wastewater spread on soil				
		10 L/m ² (100 m ³ /ha)	50 L/m ² (500 m ³ /ha)			
Organic dry matter (kg/ha)		4880	24400			
Nitrogen (kg/ha)	46 + 25	23 + 12 + 40	200			
Phosphorous (kg/ha)	50	25 + 20	100			
Potassium (kg/ha)	100	50 + 140	700			

Characteristics of soil cultivated with **grapevine** after **11** consecutive years of treatment with different amount of **OMW**.


(Source: B. Lanza et al., *Water Air Soil Pollut.*, 231.86, 2020)

*Partially fertilized plots; **Not fertilized plots.

Determinations	Control	Oil Mill Wastewater (OMW) spread				
Determinations		5 L/m ²	10 L/m ² *	50 L/m ² **		
рН	7.96	7.94	7.93	8.04		
Organic carbon (%)	0.94	0.97	1.00	1.13		
Organic nitrogen (%)	0.10	0.11	0.11	0.13		
Reducing substances (mg/100 g, as caffeic acid)	0.17	0.17	0.21	0.65		

Respiratory activity of soil cultivated with **grapevine**, two, heigt and twenty months after the spreading of different amount of **OMW**.

(Source: B. Lanza et al., *Water Air Soil Pollut.*, 231:86, 2020)

CONCLUSIONS

- The described operations represent an effective example of **sustainable agriculture** and **circular economy**, because they help:
- to increase the **oil yield**, with economic benefit for oil mill;
- to recover the **stone fragments** to use as green fuel, because obtained from a **renewable source of energy**;
- to supply **organic and mineral substances** to cultivated soil, avoiding, or reducing, the use of chemical fertilizers, and improving the chemical and microbiological characteristics of the soil.

THANKS for YOUR ATTENTION