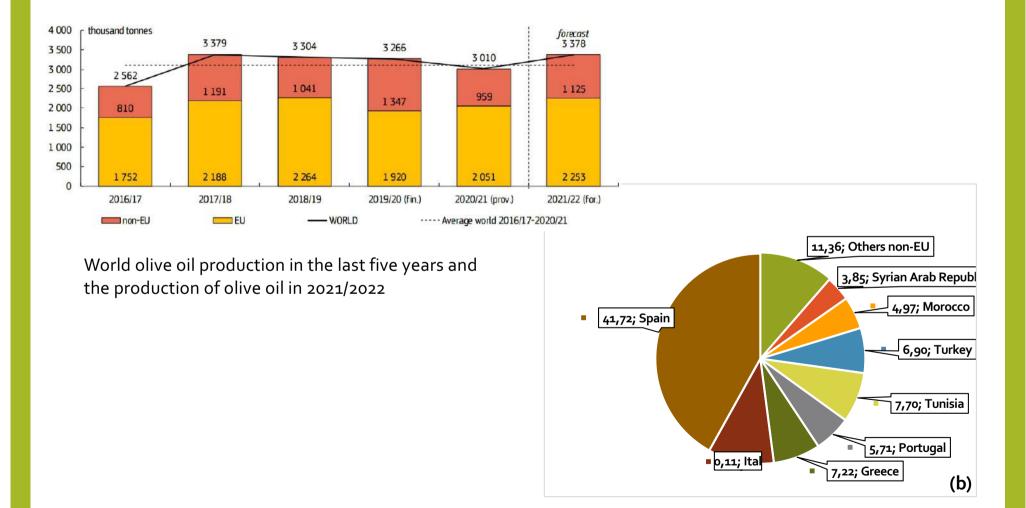

NMR spectroscopy in extra virgin olive oil authentication

Congresso SISSG 2022, 15 – 17 giugno 2022

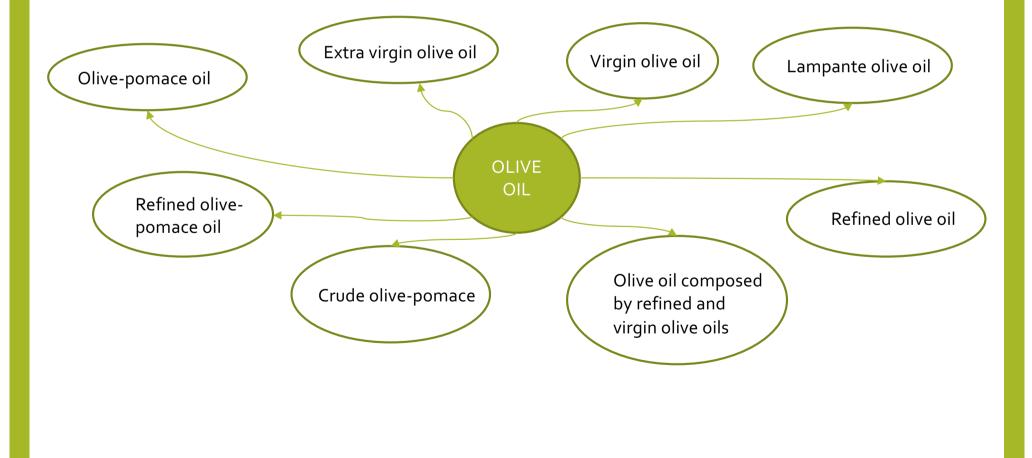
Background

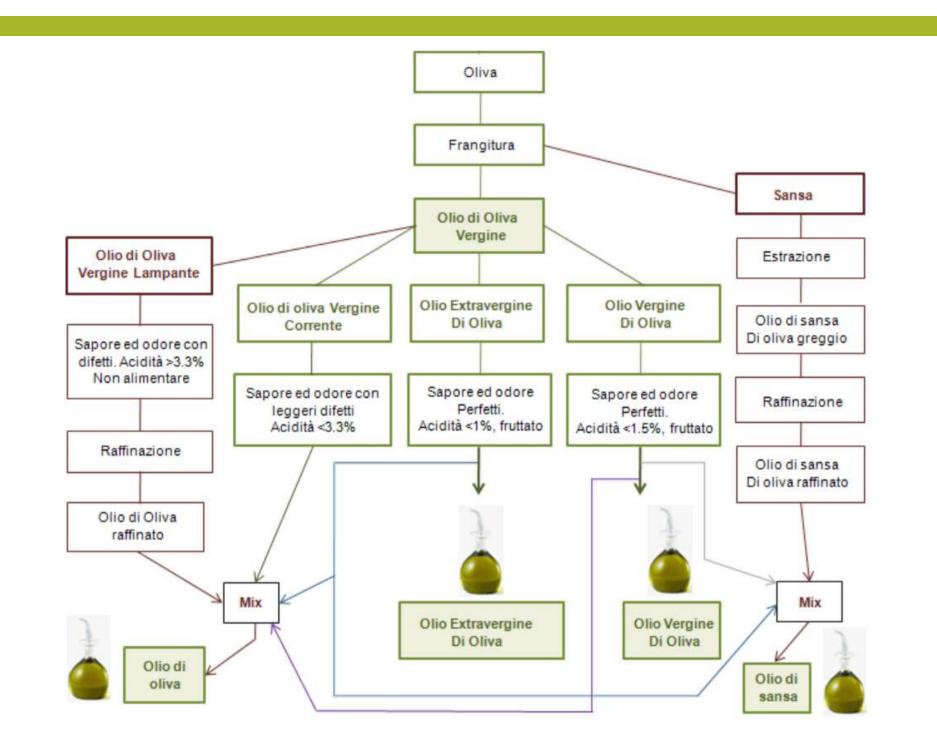

OLIVE OIL CONSUMPTION (1000t)

https://ec.europa.eu/info/sites/default/files/food-farmingfisheries/plants_and_plant_products/documents/olive-oil-dashboard_en.pdf

The economic relevance of olive oil is increasing and this is highlighted

by trade number statistics:


 $https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/plants_and_plant_products/documents/market-situation-olive-oil-table-olives_en.pdf$


Extra virgin olive oil price for the most representative markets in EU

https://www.internationaloliveoil.org/wp-content/uploads/2022/01/IOC-prices-rev-o-3.html

The European Union recognizes different types of o*live oils* based on different **physicochemical characteristics and quality standards** - Commission Regulation (EEC) No 2568/91:

PDO and PGI - Regulation CEE 2081/92

- PDO stands for Protected Denomination of Origin and it is assigned by the European Union. It is meant to protect products strictly connected with the geographical area, so that every step of production must be placed in a specific area.
- PGI stands for **Protected Geographical Indication** and it is assigned by the European Union. This label indicates that the product was producted **at least** in one of the production steps in a given area.

https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/geographical-indications-register/

LABELLING OF ORIGIN

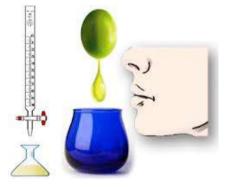
Compulsory for EVOO and VOO in 2009 (EC Regulation 182/2009) Art. 4 of the EU Reg. 29/2012:

«Extra virgin olive oil and virgin olive oil shall bear a designation of origin on the labelling»,

proving the CORRELATION BETWEEN ITS CHARACTERISTICS AND GEOGRAPHICAL ORIGIN AND PRODUCTION TECHNIQUES.

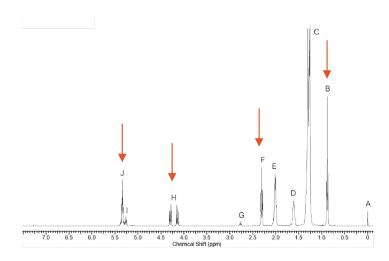
Olive oil typical fraud:

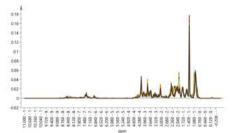
- Adulteration with cheaper oils of extra virgin olive oil without reporting this on the label
- Modification of certain characteristics (e.g. softdeodorization, addition of chloropyll and beta-carotene)
- Mislabeling of geographical origin
- Mislabeling of varietal composition

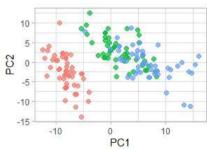

"Fraud is so widespread that few growers can make an honest living," one expert says. Slippery business, *The New Yorker*

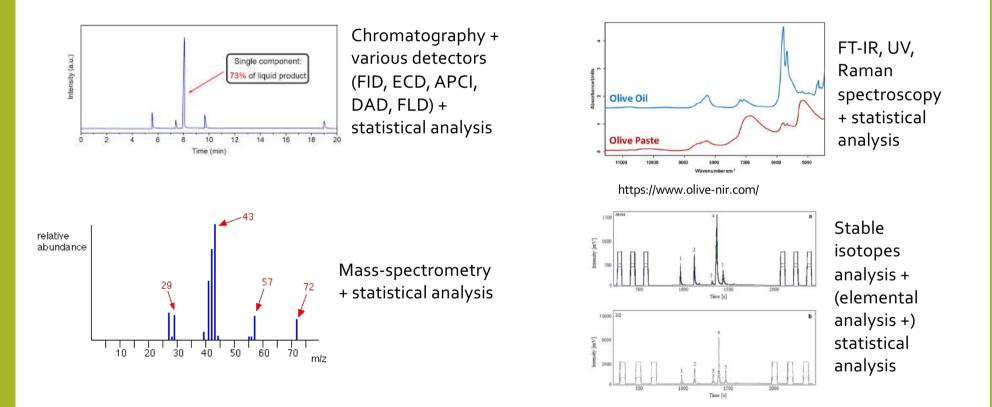
Official analysis, recognized by EU

The parameters that discriminate the category of the oil are obtained with different chemical methods (Commission Regulation (EEC) No 2568/91):


- Acidity and peroxide value with titration
- Waxes, fatty acid methyl esthers and 2-glyceryl monopalmitate content with GC-FID
- Sterols with GC-UV
- Quality and preservation state with UV
- Volatile halogenated solvents with GC-ECD
- Organoleptic assessment with a Panel test


Other methods are «extensions» of the official methods that

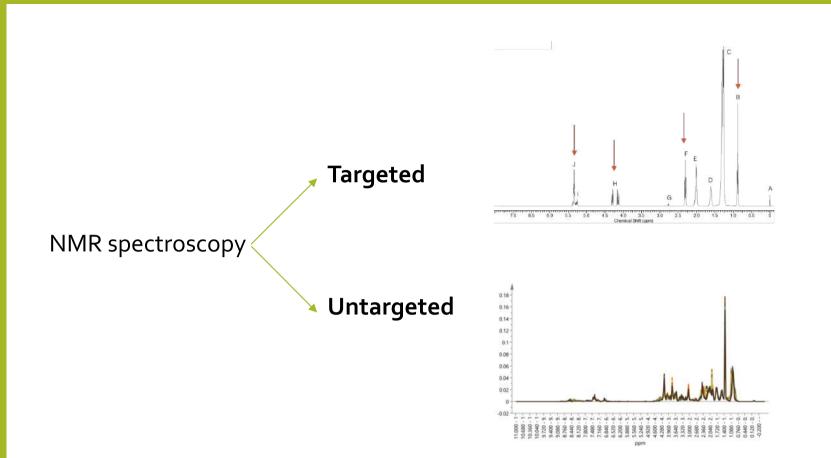

have been modified to better respond to specific requests.



UNTARGETED

Also other methods have been used for olive oils authenticity issues

NMR for olive oil authentication


NMR spectroscopy is a powerful tool for food quality control and product authentication.

- Robust
- Reliable
- No time-consuming steps
- Fast results

- Low intrinsic
 - sensitivity

Addressed problems:

- Adulteration with cheaper oils
- Mislabeling of the cultivar
- Mislabeling of the geographical origin

Preparation steps

For ¹H experiments: addition of **non-polar deuterated** solvents, without any other pretreatment.

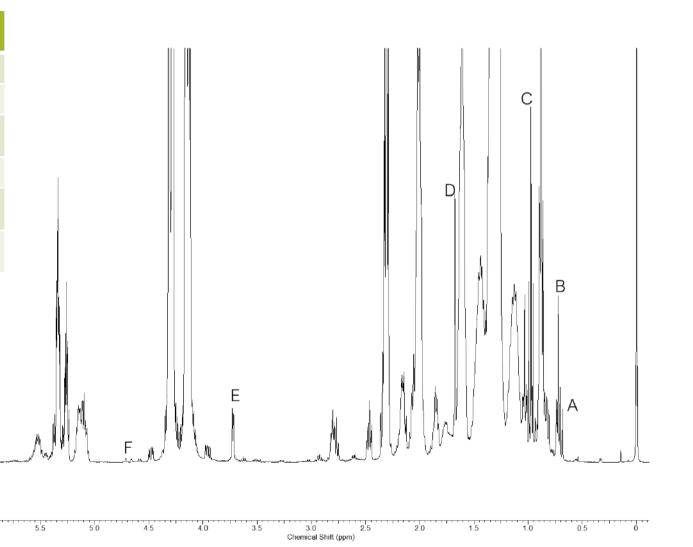
100/200 mg

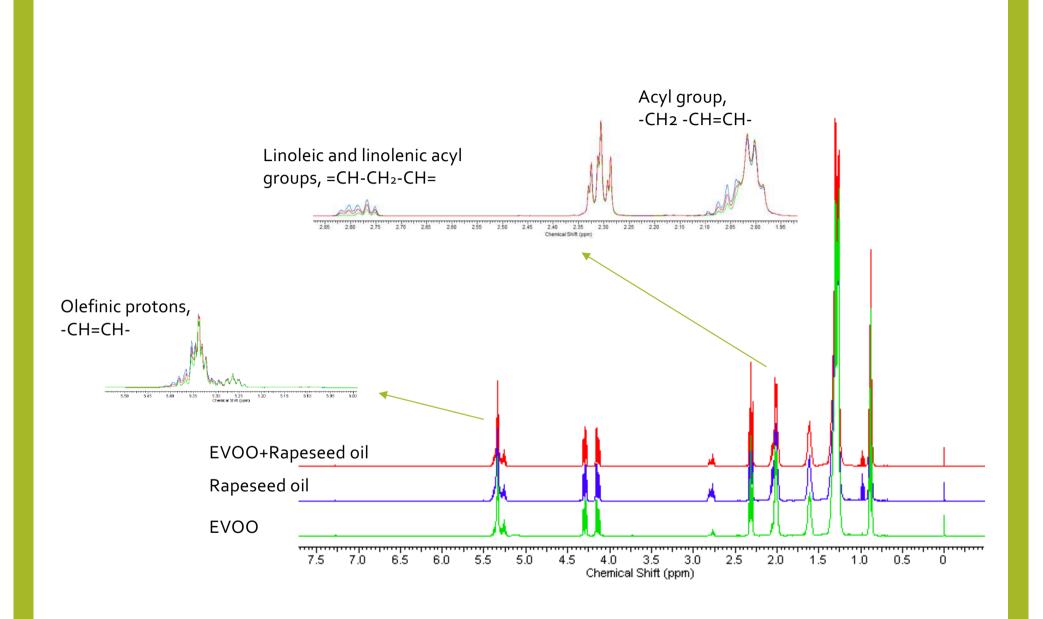
12/86 %w/w

Deuterated solvent

+ DMSO-d, TMS

Vortex

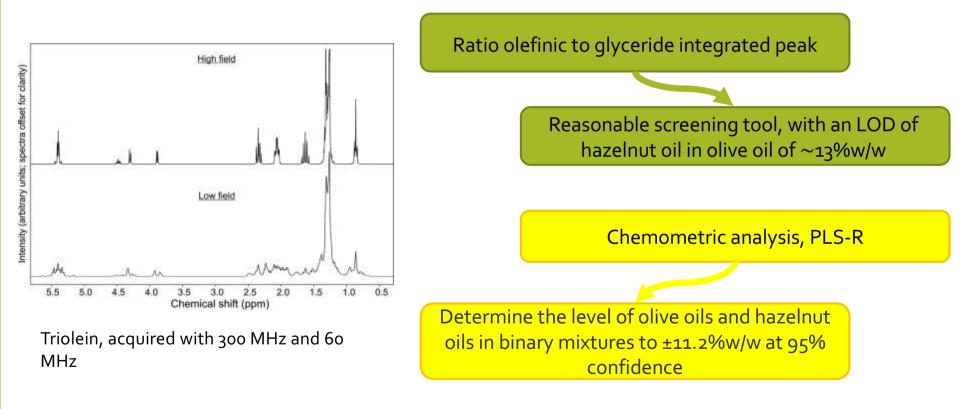

NMR spectrometer Monodimensional and NOESY experiments with suppression of main signals


¹H NMR spectra

	Peak	Assignment
	(ppm)	
Α	0.00	TMS
	ppm	
В	0.83 –	Methylic protons (-CH ₃)
	0.93	
С	1.20 –	Methylenic protons (-CH ₂ -)
	1.40	
D	1.53 –	H-3 protons of acyl moietis (-C H_2 -CH ₂ -COOH)
	1.70	
Ε	1.90 –	Allylic methylenic protons (-C H_2 -CH=CH-), all UFA
	2.10	
F	2.25 –	H-2 protons of acyl moietis (-C H_2 -COOH)
	2.35	
G	2.75 –	Bis-allylic methylenic protons (=CH-CH ₂ -CH=)
	2.80	
н	4.10 -	Methylenic protons ($\alpha \in \alpha'$) of the glycerol unit of
	4.35	TAGs (-CH ₂ -OCOR)
I.	5.30	Methine proton of the glycerol unit of TAGs (-CH-
		OCOR)
J	5.35	Olefinic protons (-CH=CH-), all UFA
		.1
		U U U U U U U U U U U U U U U U U U U
		7.0 6.5 6.0 5.5 5.0

¹H-NOESY NMR spectra

	Peak	Assignment
	(ppm)	
Α	0.68	Sitosterol (18-CH ₃)
В	0.69	Stigmasterol (-C H_3)
С	0.97	Linolenic acid (acyl - CH ₃)
D	1.66	Squalene (-C H_3)
Ε	3.69 –	sn 1,2 diglycerides (-
	3.73	C H ₂ -OH)
F	4.56 –	Terpenes
	4.90	



1. Adulteration of olive oil

Mostly TARGETED	 ¹H NMR/400, 500, 600, 60, 43.62, 22.5, 19.91 MHz Diffusion experiment 300 MHz ¹³C NMR/100.6 MHz ³¹P NMR/202.2 MHz ¹⁹F NMR/470 MHz 	•	Botanical origin discrimination Blends of different oils (e.g. sunflower, hazelnut)	Quantification and comparison of fatty acids in different ways	Multivariate statistical analysis, mostly PCA and ANOVA
UNTARGETED	¹H NMR/400, 500 MHz	•	Botanical origin discrimination Blends of different oils	Fingerprint divided in buckets	Various supervised statistical analysis, mostly PCA and PLS- DA

A promising method for industries: low-field NMR

The adoption of a low-field NMR spectrometer to detect authenticity is a promising perspective.

Parker et al., TrAC 57 (2014), 147-158

2. Cultivar discrimination

TARGETED	 ¹H NMR/400, 500, 600, 700 MHz ¹³C NMR/400, 150.9 MHz ³¹P NMR/202.2 MHz 	Discrimination among different cultivars	Determination of selected signals or fatty acids	Various supervised statistical analysis, mostly PCA and ANOVA
UNTARGETED	¹H NMR/400, 500, 600, 700 MHz	Discrimination among different cultivars	Fingerprint divided in buckets	Various supervised statistical analysis, mostly PCA and PLS- DA

3. Geographical discrimination

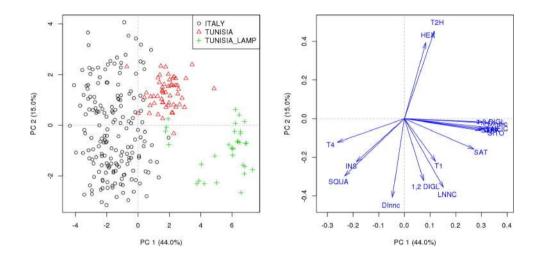
TARGETED	 ¹H NMR/400, 500, 600, 700 MHz ¹³C NMR/250 MHz 	Discrimination at regional and national level	Determination of selected signals	Various supervised statistical analysis, mostly PCA and ANOVA
UNTARGETED	 ¹H NMR/400, 500, 600, 700 MHz ¹³C NMR/250 MHz 	Discrimination at PDO, regional and national level	Fingerprint divided in buckets	Various supervised statistical analysis, mostly PCA and PLS- DA

A promising approach

A promising approach seems to be the *COMBINATION* of two different techniques:

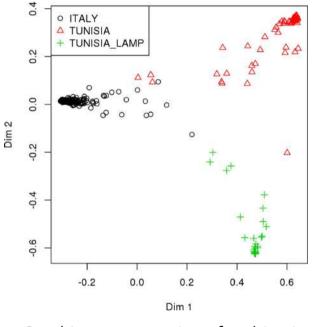
Isotopes + NMR

Food Chemistry Volume 196, 1 April 2016, Pages 98-105


The use of IRMS, ¹H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils

Federica Camin ^a A 🖾, Anita Pavone ^b, Luana Bontempo ^a, Ron Wehrens ^a, Mauro Paolini ^a, Angelo Faberi ^d, Rosa Maria Marianella ^d, Donatella Capitani ^b, Silvia Vista ^c, Luisa Mannina ^{c, b}

¹³C/¹²C, ²H/¹H and ¹⁸O/¹⁶O for isotopes


17 selected signals for NMR

Random Forest statistical analysis

PCA performed on the intesity of selected NMR variables

98.5 % of correct classification within 3 groups and 100 % distinction between Italian and Tunisian lampante oils Random Forest mapping

Graphic representation of multivariate RF

Camin et al., Food Chemistry 196 (2016), 98 - 105

Conclusions

- NMR spectroscopy is a helpful technique for the analysis of oils
- It is highly reproducible, it has easy preparative steps and with just a single analysis the fingerprint of the sample and the quantification of the characteristic compounds can be obtained
- Used in combination with other techniques the performances are extremely high
- It has not been recognized by official authorities yet

THANKYOU FOR YOUR KIND ATTENTION

Acknowledgments:

The authors acknowledge the financial support provided by Program of the Autonomous Province of Trento (Italy) with EU co-financing (Fruitomics), Grant/Award Number: FESR 2014-2020

Lab group: Luana Bontempo, Pavel Solovyev, Federica Camin