

Perugia, June 15th -17th 2022

Advancing MOSH/MOAH analysis towards speciation and contaminants identification

<u>D. Peroni¹</u>, A. Carretta¹, L. Menegoz Ursol², S. Moret².

¹ SRA Instruments S.p.A., Cernusco sul Naviglio (MI).
² Department of Agri-Food, Environmental and Animal Sciences, Università di Udine, Udine.

Hydrocarbon contamination in foodstuff

- Contamination of Mineral Oil Hydrocarbons (MOH) in various food products.
- Classification in aliphatic (MOSH) and aromatic (MOAH).
- Potential impact on consumers' health.
- In particular the presence of MOAH (especially with 3+ rings and low alkylation) raises concerns for increased risks in terms of toxicity.
- Different sources of contamination at different points in the production chain:
 - Raw material
 - Harvesting
 - Processing
 - Packaging

• Need for reliable, individual quantification of MOSH and MOAH.

SCIENTIFIC OPINION

Scientific Opinion on Mineral Oil Hydrocarbons in Food¹

EFSA Panel on Contaminants in the Food Chain (CONTAM)^{2,3}

European Food Safety Authority (EFSA), Parma, Italy This scientific output, published on 28 August 2013, replaces the earlier version published on 6 June 2012*.

Perugia, June 15th -17th 2022

MOSH/MOAH analysis

LC-GC-FID platform:

- Separation of aliphatic and aromatic fractions by LC.
- Individual quantification by GC-FID.
- High matrix complexity, limited chromatographic resolution. ٠

More detailed characterization would be highly desirable to:

- Detect of interferences. ٠
- Determine chemical (sub-)classes and confirm proper fraction separation.
- Obtain info on composition (e.g. # of aromatic rings in MOAH) for toxicity assessment.
 - analytical methodology for Goal \rightarrow more insightful speciation of **LC-separated fractions.**

Objectives

- HIGHLY INFORMATIVE, SPECIATION OF CHEMICAL CLASSES.
- CONFIRMATORY TOOL FOR SAMPLES FOUND POSITIVE TO CONTAMINATION.
- FINGERPRINTING OF CONTAMINANTS TO IDENTIFY SOURCE.

Comprehensive two-dimensional GC (GC×GC)

Injector

Column 1

Modulator

(1D)

- Two analytical columns in a single analysis.
- An interface the *modulator* allows simultaneous, independent exploitation of both columns.
- Every compound undergoes two different separation mechanisms.

1D: Color

1D: Shape

• Peaks distributed across a **2D space** reducing co-elutions and improving **separation power**.

Modulator: periodically fractionates the eluate from column 1 switching between 2 phases:

- **ACCUMULATION** (few seconds): trapping of the fractions eluting from the primary column.
- **RE-INJECTION** (milliseconds): quick and exhaustive transfer into the second dimension.

Shape

Color

2D: Color × Shape

ANALYTICAL SOLUTIONS

Comprehensive two-dimensional GC (GC×GC)

Modulation period

²D Separation

Signal = continuous series od fast separations performed by the secondary column.

1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 8.0

- 2D chromatograms: highly organized by chemical logic.
- **Position** in the 2D: info about **chemical/physical properties**. •
- Mass Spectrometry (MS): a 3rd dimension essential for ٠ identification.
- Spectral quality benefits from reduced co-elutions. ٠
- GC×GC-MS: excellent platform with unique characterization ٠ capability.

Perugia, June 15th -17th 2022

SRA INSTRUMENTS ANALYTICAL SOLUTIONS

Comprehensive two-dimensional GC (GC×GC)

Thermal modulation

- Cooling and heating by streams of gas (*jets*) directed on the column:
 - Cold jet to create a cold spot and trap the molecules.
 - Hot jet for rapid remobilization of the molecules.
- This is repeated twice (*dual-stage*) to maximize the refocusing power.

Platform configuration

Δm

SRA OPTIMODE

for heteroatoms (e.g. oxygen).

Low resolution

 $m_1 m_2$

Resolution =

m

Δm

Δm

Performance assessment

2D plots of LC fractions - FID

2D plots of LC fractions - QTOF

2D plots of LC fractions - QTOF

MOAH

Perugia, June 15th -17th 2022

MOSH classification

х

MOAH classification

Fingerprinting – MOSH of various lubricants

Fingerprinting - MOAH of various lubricants

Fingerprinting – EVOO samples (MOSH)

Conclusions

- Two-dimensional analytical platform based thermally modulated GC×GC with parallel FID/QTOF detection.
- This solution advances characterization capability and offers the possibility to perform more informative and accurate analysis of MOSH and MOAH fractions.
- Powerful additional tool, complementary to the reference methodology, for more insightful investigation of samples positive to contamination.
- Possibility to characterize more in details both fractions.
- Effective fingerprinting tool for determining with good confidence the source of contamination.

Perugia, June 15th -17th 2022

srainstruments.com

