An ¹H NMR-Chemometric model for the classification of Italian Extra Virgin Olive Oils

SISSG CONGRESS

June 15th-17th 2022

Mattia Spano

FACOLTÀ DI FARMACIA E MEDICINA SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI CHIMICA E TECNOLOGIE DEL FARMACO

EVOOs: a precious Italian product

Main olive oil producers

Spain (1129233 tons)

Italy (336581 tons)

Greece (290476 tons)

Tunisia (239500 tons)

Turkey (217800 tons)

Morocco (204200 tons)

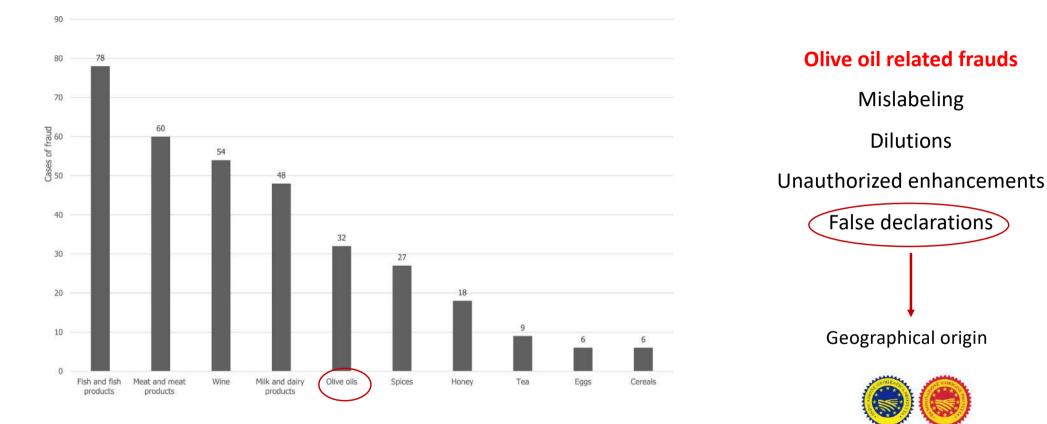
[FAOSTAT DATA, referred to 2019]

Consumes

Italian consume + 7.4%

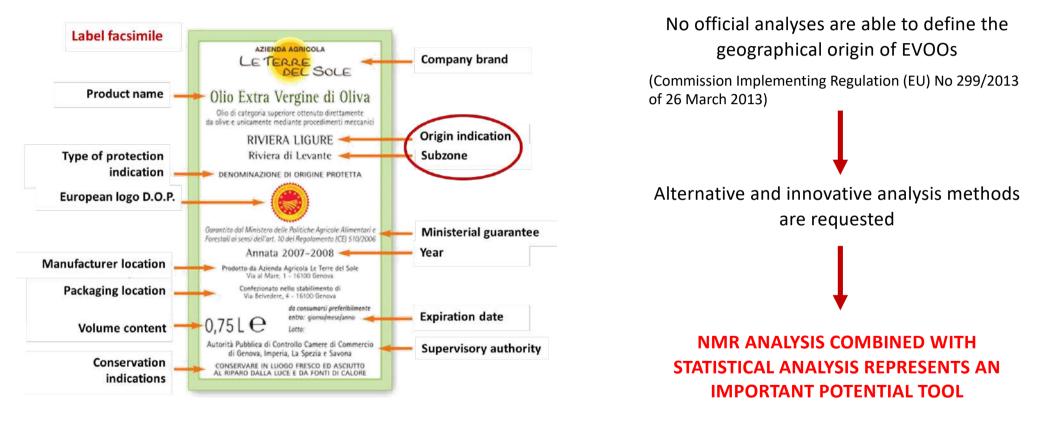
2020 Global export + 15.6%

European export + 24.7%



1.815 million dollars market in 2026 (+ 24% respect to 2020)

[ABSOLUTE REPORTS, 2021]

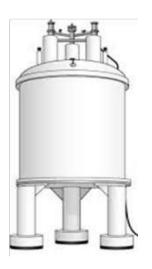

EVOOs: high risk of frauds

[E. Casadei et al. Emerging trends in olive oil fraud and possible countermeasures, Food Control, 2021]

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

EVOOs: label information

[COMMISSION REGULATION (EC) No 182/2009 amending Regulation (EC) No 1019/2002 on marketing standards for olive oil]


23/07/22

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

Aim of the work

Create a statistical model able to predict Italian EVOOs geographical origin by using data obtained from ¹H NMR analysis

NMR spectroscopy

- Analysis methodology based on the magnetic properties of nuclei
- Non-destructive
- High reproducibility
- Short time for sample preparation
- Sample resolution with a single experiment (possibility to identify both polar and non-polar molecules)
- Quantification possibility
- Structural elucidation

Sample collection

383 EVOOs samples collected from nine Italian region in three sequential years

Samples were preserved at a temperature range of 10-15°C until analysis, far from light and heat sources

C. Ingallina et al. Metabolites. 9 (2019)

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

¹H NMR analysis

20 µL of olive oil

20 μ L DMSO-d₆ 700 μ L CDCl₃

Sample preparation

Spectra acquisition

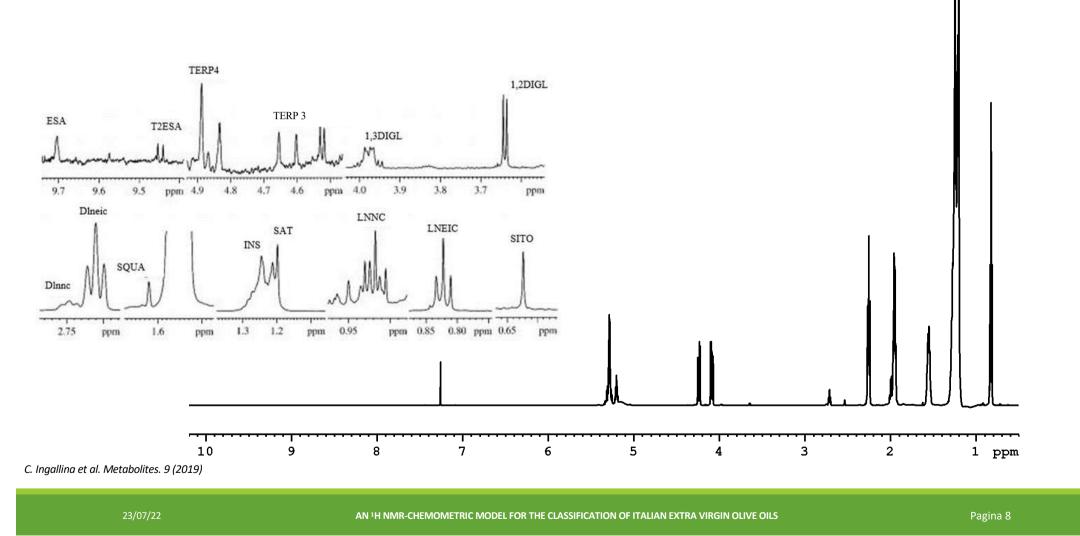
The ¹H NMR spectra were acquired at 301K on a Bruker AVANCE 600 using the following experimental conditions:

- number of scan 1024;
 - 90°pulse
- TD 64K data points
- relaxation delay 0.5 s
- acquisition time 2.96 s
- spectral width 18.5 ppm

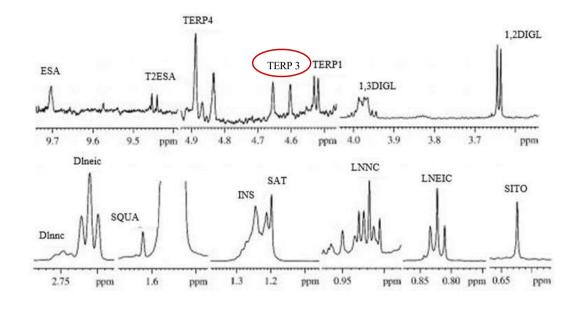
Spectra processing

- The ¹H NMR spectra were phased manually
 - 0.3 Hz as line-broadening factor
 - Zero filling (size=64K)
 - Calibration: CDCl₃ signal set at 7.26 ppm
- Baseline correction: Cubic Spline Baseline Correction

C. Ingallina et al. Metabolites. 9 (2019)


23/07/22

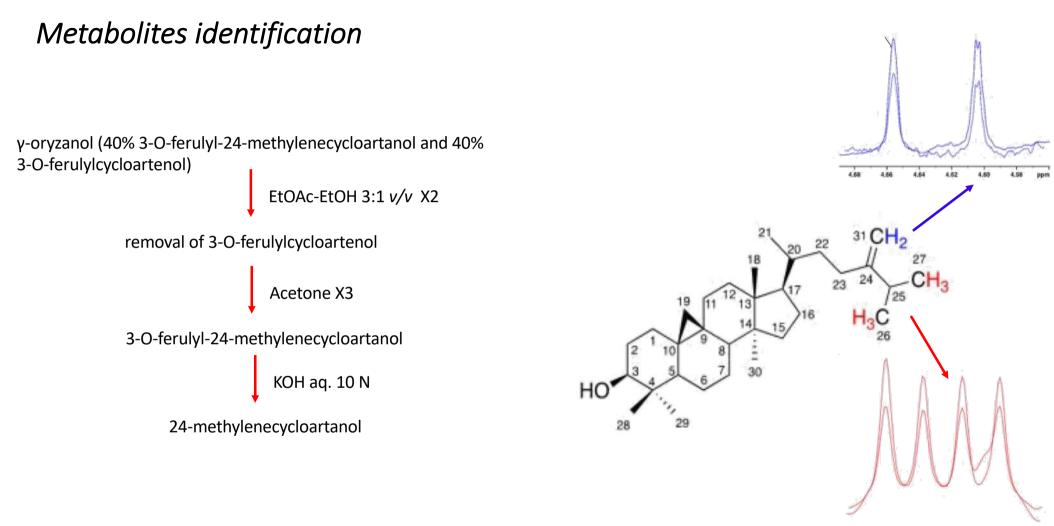
AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS


600 MHz

Bruker AVANCE 600

Metabolites identification

Metabolites identification


	¹ H chemical shift
Assignment	(ppm)
Methyl 18 of β-sitosterol (SITO)	0.623
Linoleic acid methyl group (LNEIC)	0.843
Linolenic acid methyl group (LNNC)	0.910
Methylenic protons of the saturated fatty acids chains (SAT)	1.197
Methylenic protons of the unsaturated fatty acids chains (INS)	1.244
Squalene (SQUA)	1.620
Diallylic protons of the linoleic acid (Dlneic)	2.710
Diallylic protons of the linolenic acid (Dlnnc)	2.746
Sn-1,2-diglycerids α methylenic protons (1,2DIGL)	3.636
Sn-1,3-diglycerids α methylenic protons (1,3DIGL)	3.988
Terpene 1 (TERP1)	4.541
Terpene 3 (TERP 3)	4.609
Terpene 4 (TERP4)	4.885
Trans-2-Hexenal (T2ESA)	9.454
Hexanal (ESA)	9.704

24-methylenecycloartanol ???

C. Ingallina et al. Metabolites. 9 (2019)

23/07/22

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

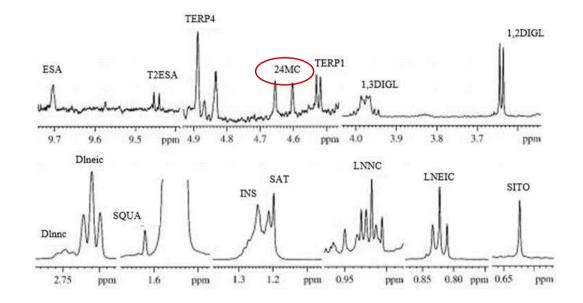
C. Ingallina et al. Metabolites. 9 (2019)

23/07/22

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

Pagina 10

0.965


0.960 ppt

0.970

0.080

0.975

Metabolites identification

A	¹ H chemical shif
Assignment	(ppm)
Methyl 18 of β-sitosterol (SITO)	0.623
Linoleic acid methyl group (LNEIC)	0.843
Linolenic acid methyl group (LNNC)	0.910
Methylenic protons of the saturated fatty acids chains (SAT)	1.197
Methylenic protons of the unsaturated fatty acids chains (INS)	1.244
Squalene (SQUA)	1.620
Diallylic protons of the linoleic acid (Dlneic)	2.710
Diallylic protons of the linolenic acid (Dlnnc)	2.746
Sn-1,2-diglycerids α methylenic protons (1,2DIGL)	3.636
Sn-1,3-diglycerids α methylenic protons (1,3DIGL)	3.988
Terpene 1 (TERP1)	4.541
24-methylenecycloartanol (24MC)	4.609
Terpene 4 (TERP4)	4.885
Trans-2-Hexenal (T2ESA)	9.454
Hexanal (ESA)	9.704

C. Ingallina et al. Metabolites. 9 (2019)

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

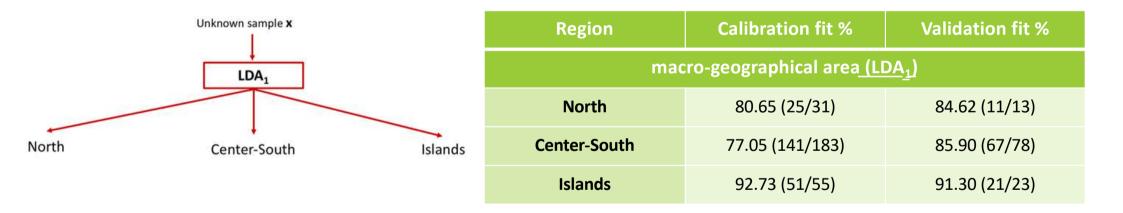
Development of the linear discriminant analysis (LDA) model

The intensities of all the 15 identified NMR signals were selected for each of the 383 samples and used for the creation of a matrix (383 x 15) submitted to LDA analysis

Kennard-Stone algorithm was used to split the samples in training set (269 samples, used for model creation) and validation set (114 samples, used for model validation)

Region	Calibration fit %	Validation fit %
Calabria	36.11 (13/36)	40.00 (6/15)
Lazio	44.68 (21/47)	60.00 (12/20)
Liguria	80.00 (12/15)	66.67 (4/6)
Lombardy	75.00 (12/16)	100.00 (7/7)
Molise	81.48 (22/27)	63.64 (7/11)
Apulia	49.06 (26/53)	43.48 (10/23)
Sardinia	91.67 (22/24)	90.00 (9/10)
Sicily	74.19 (23/31)	61.54 (8/13)
Tuscany	60.00 (12/20)	66.67 (6/9)

LDA classification model to discriminate all the investigated region was not completely efficient

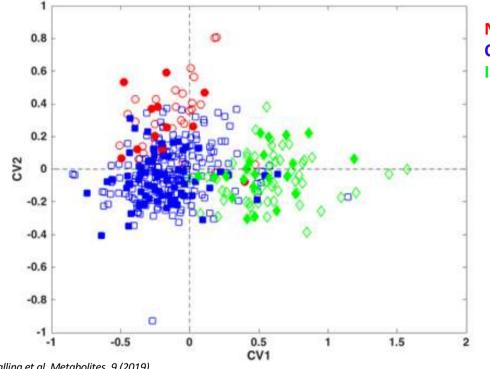

C. Ingallina et al. Metabolites. 9 (2019)

23/07/22

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

Development of the linear discriminant analysis (LDA) model

In a second stage, a hierarchical approach based on breaking the overall classification problem in a series of smaller sub-models to be sequentially applied was tested


C. Ingallina et al. Metabolites. 9 (2019)

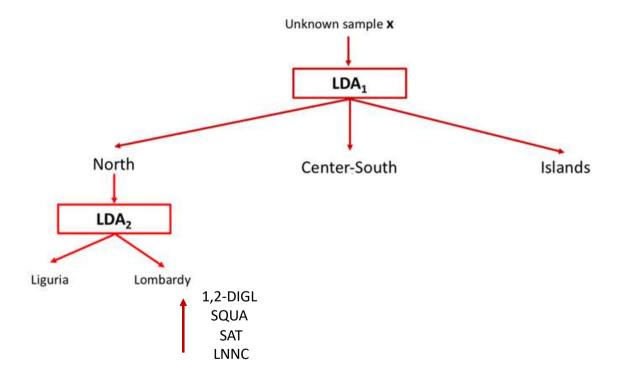
23/07/22

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

Development of the linear discriminant analysis (LDA) model

The LDA model built to discriminate among the three geographical macroareas provides very good classification ability not only on the training data, but also in validation ones

North **Center-South** Islands

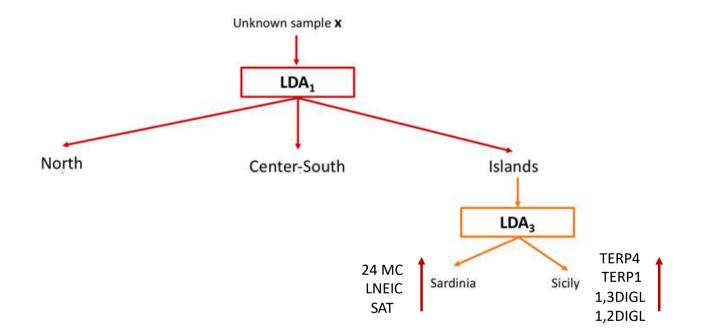

	High content	Low content
North	24MC, TERP1	SAT, LNEIC
Center-South	SAT, LNNC, SITO	TERP4, 24MC
Islands	TERP4, SQUA, LNEIC	TERP1, SITO

C. Ingallina et al. Metabolites. 9 (2019)

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

Development of the linear discriminant analysis (LDA) model

Additional models discriminating among the individual members of the three macro-geographical areas were built

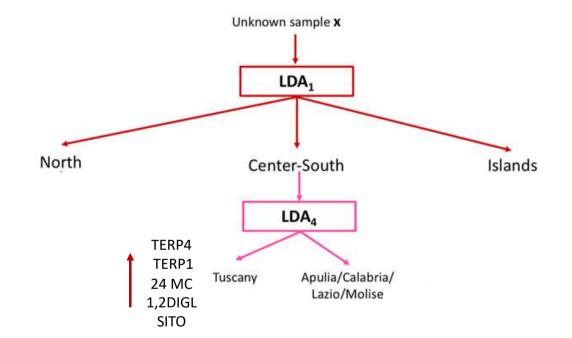

C. Ingallina et al. Metabolites. 9 (2019)

23/07/22

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

Development of the linear discriminant analysis (LDA) model

Additional models discriminating among the individual members of the three macro-geographical areas were built


C. Ingallina et al. Metabolites. 9 (2019)

23/07/22

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

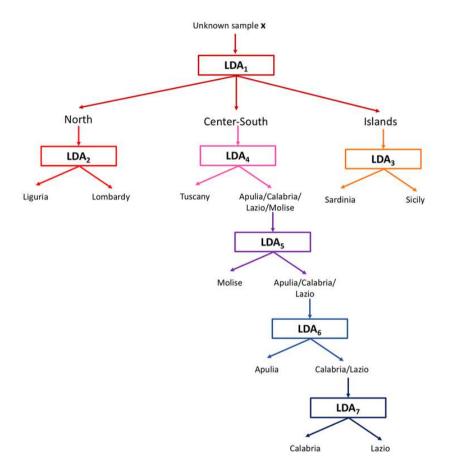
Development of the linear discriminant analysis (LDA) model

Additional models discriminating among the individual members of the three macro-geographical areas were built



C. Ingallina et al. Metabolites. 9 (2019)

23/07/22


AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

Development of the linear discriminant analysis (LDA) model

C. Ingallina et al. Metabolites. 9 (2019)

AN ¹H NMR-CHEMOMETRIC MODEL FOR THE CLASSIFICATION OF ITALIAN EXTRA VIRGIN OLIVE OILS

CONCLUSIONS

- NMR is a powerful tool for the characterization and the analysis of EVOOs
- When combined with statistical analysis, NMR data can be used for the creation of predictive models
- The model here presented showed to be effective in the prediction on regional EVOOs origin

FUTURE PERSPECTIVES

- Implementation of the created model by involving EVOOs from other Italian regions
- Use of NMR spectroscopy as an official analysis method for EVOOs quality determination

ACKNOWLEDGMENTS

Prof. Luisa Mannina Prof. Federico Marini Dr. Anatoly P. Sobolev Dr. Cinzia Ingallina Dr. Giacomo Di Matteo Facoltà di Farmacia e Medicina SAPIENZA Università di Roma

Dipartimento di Chimica e Tecnologie del Farmaco

LABORATORIO DI CHIMICA DEGLI ALIMENTI SAPIENZA UNIVERSITÀ DI ROMA Dipartimento di Chimica e Tacnologie del farmaco

THANKS FOR YOUR KIND ATTENTION

VII Workshop Applicazioni della Risonanza Magnetica nella Scienza degli Alimenti

Dipartimento di Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, Sapienza Università di Roma, 23-24 giugno 2022

mattia.spano@uniroma1.it

23/07/22

TITOLO PRESENTAZIONE